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Fifteenth Annual ACM SIGACT/SIGPLAN Symposium on Principles of Programming Languages,
San Diego, January 1988

Optimal Code Generation for Expression Trees:
An Application of BURS Theoryt

Eduardo Pelegri-Liopart

S - .Susan L. Graham

Computer Science Division
EECS Department

University of California, Berkeley

Summary code generator runs much faster than recent proposals to •

A RwriTe System is a %pollection of rewrite rules of solve C-REACHABILITY that use pattern matching and deal

the form (t-$ where & and 0 are tree patterns. A rewrite with costs explicitly at solving time
system can be extended by associating a cost with each [AGt6,HeD bt,WeW -6]. The BURS theory generalizes
rewrite rule, and by defining the cost of a rewrite sequence and unifies the bottom-up approaches of HenryDamron
as the sum of the costs of all the rewrite rules in the [HeD87] and Weisgerber/Wilhelm [WeW86].
sequence. The REACHABIIY problem for a rewrite sys-
tem R is, given an input tree T and a fixed goal tree G, to 1. Introduction
determine if there exists a rewrite sequence in R, rewriting Trees are convenient representations for many appli-
T into G and, if so, to obtain one such sequence. The c- cations because of their hierarchical structure and the ease
REACHABILITY problem is similar except that the obtained with which they can be manipulated. Frequently this
sequence must have minimal cost among all those manipulation corresponds to transformations between dif-
sequences- rewriting T into G. ferent tree representations. In this paper we study a

mechanism to describe tree transformations and rewrite
-This paper introduces a class of rewrite systems

called Bottom-Up Rewrite Systems (BURS), and a table- systems, together with a specific tree transformation prob-

driven algorithm to solve REACHABILITY for members of lem, REACHABILITY, and its application to the generation of

the class. This algorithm is then modified to solve c- optimal code for expression trees.

REACHABILITY and specialized for a subclass of BURS so In this paper, trees are denoted either either by
that all cost manipulation is encoded into the tables and is graphs (as in Figure 1.1) or by a prefix linearization. For
not performed explicitly at solving time. The subclass example, op (T1 ,T2) denotes the tree with root op and sub-
extends the simple machine grammars'tAOHSCl, rewrite trees T, and T2. The node labels are taken from an alpha-
systems used to describe target machine architectures for bet Op of operators and all operators are assumed to have
code generation, by allowing additional types of rewrite fixed arity. Patterns are trees over an alphabet that has
rules such as commutativity transformations. been extended with new symbols with arity 0 called vri-.

A table-driven-cde genuraforb d oables. In the examples, variables are represented by X, Y,
REACtABILITY has been implemented and tested with or X, (i a0), and all other symbols stand for operators. Ifseveral machine descriptions. The code generator solves a is a value assignmcat for variables present in a pattern p,
C-REACHABIhiTY faster than a comparable solver based on a(p) denotes the replacement of the variables by the values

C-RECHA111Y fatertha a cmpaabl soler ase on associated by cr. p matches at a tree T if there is an
Graham-Glanville techniques [AGH841 (a non-optimal asiat by v. t the aale th ere isuch
technique), yet requires only slightly larger tables. The hsinmcnt ot values to the variables in the pattern, a, such

_______________________that a(p) is T. Thus, the pattern +(X ,Y) matches at any
t This esearch was partially qsmosod by Defense Advarwe tree rooted with + and having two subtrees, corresponding b

Research Projects Agency (DoD) Arpa Order No. 4871, monitored by Na-
vI Electronic Systens Command under Conuact No. N00039-84-C- to X and Y respectively. Two patterns p, and P2 are said
0089. to be equivalent if they are identical up to a systematic
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renaming of the variables. All patterns in this paper are
linear, i.e., every variable appears at most once. A rewrite TO T

rule is of the form ao.--13, where a and are patterns; ( is (TT)@Q, i 1

called the input pattern and 03 the output pattern, and all A rewrite rule r: a -+ is applicable to a tree T at a
the variables in 13 must appear in c. A rewrite system is position p if a matches at T@. If r is applicable to T at p
just a collection of rewrite rules. Figure 1.1 shows a with variable assignment a, the application of r to T atp
rewrite system that we will use in our examples. is a new tree, identical to T except that the subtree T@0 is

replaced by a(13). A rewrite sequence is just a sequence of
applications of rewrite rules:

A position in a tree is a sequence of integers a nt
(separated by • for readability) representing a "path" Definition 1.1 A rewrite application for a rewrite system
from the root of the tree to a node in the tree. Ifp isa RisapairCr>whererisaruleinRandpisaposi.
position in T, the subree of T rooted at p is denoted by tion. A rewrite sequence for R is a sequence r of rewrite
T& . The root position in a tree is designated by the empty applications. If =<ropo> ... <rp,> is a rewrite
sequence E; each integer corresponds to an index from left sequence, then 'T is applicable to a tree T if ro is applica-
to right commencing with 1. If k .s is a sequence with ble to T@,. and its application yields Ti, and for 1:i <n, r,
head an integer k and tail a sequence s, and - is read as is applicable to (T), , and its application is Ti,,. The
"is defined as", positions and subtrees are related as fol- application oft to T is denoted r(T) and is T.. 1. We say
lows: that a rewrite sequence is valid if there is some tree to

Rewrite Rules -

-+ reg Reg -+ reg amode -+ reg
amode amode

ri r 2  r3

reg --. amode Const -+ amode -, amodeConst reg

0 -+ Const A X Axo 0xY Y X d

r7 r_ r_ _ _

A -+ bip , b p
XY XY XY XY 1on!/

r i o) r i l t v .? ' El , s .

Example of a Rewrite System

Figure 1.1
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+ rs2 '> +,, <r'3.2.2> /+ r6.2>

0 +0 +0 +O0amode

Const Const Const ainode Const reg

+ <rl0 ,E> biQ <r7,1> biQk <rs,1> biQ (l >4

o wmode 0 amode Const amode &mode ainode

A Rewrite Sequence

Figure 1.2

This paper is only concerned with the fixed-goal

which it is applicable. The length of a rewrite sequence is version of REACHABILITY, and with BLOCKING; see [Pe187]

the number of rewrite applications in it. The composition for some considerations on general REACHABILITY. In our

of a rewrite sequence is a rewrite rule (possibly not in R) example, given the input tree +(0,+(Const,Const)), one
that is applicable whenever the rewrite sequence is appli- solution to REACHABILITY for goal reg is the sequence ofhate is aplcable wenede the meresritate sequence . Figure 1.2. If Li consists only of trees with labels Reg, .
cable and always yields the same result as the sequence. os,0+,ad-threiesyemfFgue1,nvrCornst, 0, +, and -, the rewrite system of Figure 1.1, never , .,

If zr is a rewrite sequence for T such that all the blocks.
applications in r have positions below p (that is, position 'tmei
p is an initial sequence of all the application positions), A rewrite system can be extended by assigning a
the restriction of 'r to p, rg,, is the sequence of applica- cost to each rewrite rule. The cost of a rewrite sequence

tions identical to t except that every position is stripped of for an extended rewrite system can then be defined as the

the initial sequence corresponding top. sum of the costs of all the rewrite rules in the sequence.
This leads to a variation of the REACHABIrITY problem,

Not every rewrite sequence has a composition. A called C-REACHABILITY, where the objective is not only to
rewrite system R defines transformations between sets of provide a rewrite sequence but to provide one with
trees through its rewrite sequences: a tree T can be minimum cost.
mapped into a tree 7' if there exists a rewrite sequence in
R taking T into 7. The transformation is, in general, Returning to our example, if the cost of each of the

many-to-many. rewrite rules of Figure 1.1 were defined to be 1. then the
cost of the sequence of Figure 1.2 would be 7. That

The problems studied in this paper are the following: rewrite sequence is not a solution to C-REACHABLITY; the

Problem REACHABILITY Let R be a rewrite system over smallest possible cost is 6, and may be obtained by the S

an alphabet Op, and let Li and L, be two sets of trees over sequence of Figure 1.3.
Op. The REACHABILITY problem for R, Li, and L, is, given
any T e L8 and any T" E 4,. determine if there is a The rewrite system of Figure 1.1 is chosen so that
rewrite sequence r for R applicable to T such that applicable rewrite sequences correspond to instructions for
't(T). uT, and, if so, to produce one such sequence. some (hypothetical) target machine'. Hence, the rewrite WR

If L, is a singleton G), then the REACHABILitY sequences in Figure 1.2 and Figure 1.3 correspond to %
problem is called the fixed goal REACHABILY problem, instruction sequences for the given input tree and for the
and G is called the goal. The BLOCKING problem for R, target machine. If the rewrite system accurately describes
L,. and goal G is to determine if there eists a tree T = Li the target machine, a solution to REACHABILTY provides a
that cannot be rewritten into G by R.

r 2 might be used to generate a register-to-register move if the in-
put register could not be modified.
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A Better Rewrite Sequence

Figure 1.3

correct sequence of instructions for the input tree. If, in graphs (Ul LR graphs). Without loss of generality, we

addition, the costs of the rewrite rules correctly represent assume that the goal tree for fixed-goal REACHABILITY is a
the desired properties of the target machine, a solution to leaf labeled with a distinguished nullary operator which
C-REACHABILITY provides a locally optimal instruction appears only as an output pattern in a rewrite rule.
sequence. BLOCKING corresponds to detecting the The first step in defining LR graphs is to restrict
existence of an input tree for which code cannot be gen- attention to rewrite sequences in a normal form that

erated. Examples of typical cost metrics are the number of rewrites the input tree bottom-up. A rewrite sequence can
cycles, and the number of bytes referenced. In the pres- be put in normal form by "reordering" the rewrite appli-
ence of features like pipelines and caches, the number of cations
cycles will be only a static approximation of the execution
costs. Previous research (notably [GrH84,Hen84]) has Definition 2.1 Let ro and r, be two rewrite rules in R, i

shown how to write target machine descriptions using a and let rT<ropo><r,p1 > be a valid rewrite sequence. An
variety of techniques, and allows us to conclude that exchange of the two applications is a new rewrite
although some features, like constraints on the number of sequence r' of the form <r jp 2><r,p 3 > such that for all
registers, must be handled outside the framework of C- T, r is applicable to T if and only if t' is applicable to T,
REACHABILITY, an efficient algorithm to solve C- and when so, (T)i't'(T).
REACHABILITY can be used to provide an efficient algo- If x and '2 are two rewrite sequences in R, 'r is a

rithm for locally optimal code generation. permutation of'r2 if I can be obtained from C12 through a

The rest of this paper is organized as follows. Sec- sequence of exchanges. .

tion 2 shows how to solve REACHABILTY for a special A rewrite sequence tr is said to "loop" if it contains
class of rewrite systems, then Section 3 modifies the tech- a pa proper prefix subsequence '12 such that, for some tree T, ''
niques and applies them to solving C-REACHABILITY. r1(T)=-I2(T). All non-looping rewrite sequences can be
Finally, Section 4 discusses a code generator generator reordered so that they proceed in a "bottom-up fashion",

implemented following the theory of the previous sections. namely, so that any rewrite application at a position p is

The paper concludes with a discussion of related work. preceded by all rewrite applications having positions

2. Solving REACHBLITYr below p which can be reordered in that way. For example,

the sequence of Figure 1.2 can be placed into bottom-up
iACHABIITn Y is solved by characterizing all the form by reordering the subsequence <r1 0,-><r 7 ,l><r 5,l>

possible rewrite sequences with a bottom-up tree automa- as <r7 ,l><r5 ,l><rjo,c>. The rewrite sequence of Figure _

ton [Tha73]. We use two notions of state: local rewrite 1.3 is already in bottom-up form. The notion is formalized
graphs (LR graphs) and uniquely invertible local rewrite as follows:

UN-,F -U



Definition 2.2 Let Tnop(T.....T,) be a tree in some Li is not specified, it is understood to be the set of all trees .

input set L, let % be a rewrite sequence without loops over the given set of symbols, Op, which we denote as
transforming T into a tree T'. x is in normalform at T. if LOP.
it is of the form rl -. to., and, (l)for 1.i~n. ci only There are rewrite systems and ets of trees not in a

contains applications in positions in the subtree Ti. and BURS. The rewrite system of Figure 2.1 with goal d is
the restriction of ci to the position i, (),C)@i (Ti), is T'i; (2) one example: the local rewrite sequence of the (unique)
%0 applied to op(r 1 . . . .T 8) yields the output tree T; normal form rewrite sequence rew oting the input tree

and (3) there isno permutation of 'r satisfying (1) and (2) a(b(b(."b(c)))) into d has length dependent on the
and in which some rewrites from co have been moved into height of the input tree. In contrast, the example of Figure
; for liSn. "t is in normal form (everywhere) if i is in 1.1 with goal reg satisfies the BURS property for k=3.
normal form at T, and, (4)for l~iSn, (',r)@i is in normal

Testing membership in k-BURS is easy when both -form. L n oaeLpA normal form rewrite sequence for an input tee L, and L, are Lo.

assigns to each position in the tree a "local" rewrite Proposition 2.1 Let R be a rewrite sstem or a set of
operators Op, and let k be a positive integer. There is an
algorithm that will determine whether <R,LorLor,> is in

Definition 2.3 Let 't be a normal form rewrite sequence k-BURS.

for T of the form t, - " "rto. The local rewrite sequence Proof

assigned by c to a position p in T is defined by F (Tr,p), We can characterize the form of any local rewrite

where (1) F(TjE,) is To, and (2) if p is of the form i . q sequence at some position p in a tree. The first observa-

and T is of the form op(TI,.... T,), then F(Tr,p) is ion is that it must start with a rewrite application at posi-

F(Tj,rcj,q). The local rewrite assignment of -r and T is don p because, otherwise, this first rewrite application

the function assigning to each position in T its local would be assigned to the local rewrite sequence of a posi-

rewrite sequence. tion below p. The second observation is similar but
requires an additional notion. If p is a pattern, let T(p)

For example, the local rewrite sequence assigned by denote the set of positions in p that do not correspond to a
the rewrite sequence of Figure 1.3 at the root of the input variable; we call these the positions touched" by the pat-
tree is <r9 ,E><rj,E><rj,E>. tern. If <r,p> is a rewrite application and r is a-P, we

We can now define the k-BURS and BURS proper- define T(<rp >) to be the union of those positions of the
ties. form p .q where q is in T(a)uT(3). Finally, if r is a

Definition 2.4 Let k be a positive integer, and let T be a
rewrite sequence in normal form for some input tree T. r_ _ _ _

is in k-normalform if it is in normal form and each of the Rewrite Rules
local rewrite sequences assigned by st to the nodes of T is
of length at most k. f

Let R be a rewrite system over Op, let Li and L, be X X X X
sets of trees over Op, and let k be a positive integer. The -'

triple <RL ,L,> is said to have the k-BURS property if b + -- d
for any two trees T e Li and ' oE L. and any sequence x c c
in R, with r(T)=I . there is a permutation of r which is in
k-normal form. The class BURS is composed of those tri-
ples <R,L>,L,> satisfying the k -BURS property for some Example of a Rewrite System not in BURS

positive integer k. Figure 2.

Since we are considering only fixed-goal problems
in this paper, L. is normally understood to be (goal). If



rewrite sequence, define T() as the union all the sets sequence. This decomposition can be used to define our
T(<r p>) for rewrite applications <r ji> in r. The first notion of a state for solving REACHABnITY. The local
second observation now states that, if %0 is a local rewrite rewrite graph (LR graph) of a tree T represents the local
sequence then, for any prefix of to of the form ', <'r ,, rewrite sequences of all normal form rewrite sequences
the position p must be in T(r). As before, the reason is applicable to T. For a rewrite system R and a goal G, we
that otherwise <rp> could be moved ahead and would consider two sets of patterns: leG are the patterns of
belong to the local rewrite sequence of a position below p. interest at the beginning of local rewrite sequences, and

From the characterization, it follows that there are a Op.o are the patterns of interest at the end of the local

finite number of local rewrite sequences of length no larger rewrite sequences and are used to construct members of I

than k, and they can be generated. Given a rewrite system higher in the tee. EFe0 is their union.
R, <R,Lo,,.Lo,> is in k -BURS if and only if there is not a

R, <~o,.Lo> i in -BRS f ad oly i thre s nt a Definition 2.6 If R is a rewrite system, and G is the fixedrewrite sequence of length k+l, which can be found by goal the .xtel pater set of R and G. E is thegenerating and testing all the candidates. 0" ol h xeddptense fRadGE~ ,i hunion of the sets I.G (the inputs), and OG (the outputs),

It follows from the characterization used in the proof defined constructively below.
that every local rewrite sequence has a composition (which (1) G b
may not be in R).

The rewrite systems used to describe target (2) For some input tree T. position p. and some normal
machines are BURS. form rewrite sequence, let "r be a local rewrite

sequence with composition o4 -+ N. Let p be a pat-

Definition 2.5 Let a.-+ 0 be a rewrite rule. We say that tern in 0, with variables renamed, if necessary, to

the rule is: an instruction fragment rule i a is a tree be distinct from those in N. If there is a substitutionthec such that anp =rs'nto fragmen then cy"p is in aG tree
without variables and 0 is a (O-ary) symbol; a generic a such that ft() =o(p), then a(. is inOR,, a(a)
operator rule # a and P are op(X1 .  Xt) and is in it.G, and all the proper subtrees of a(ah)

op'(X 1... ,X.). for some n -ary symbols op and op'; a belong to Or.G.

commutativity rule if a and P are op (X1 .... X.) and Now we can define LR-graphs.
op(Xx() ..... X.(R)), for some n-ary operator op and
some permutation n; and an Identity rule if a and P are Definition 2.7 Let R be a rewrite system in BURS. The
op (X ,T) andX ,for some tree T that has no variables. LR graph associated with a tree T is a graph G = (V,E)

A simple machine grammar is a rewrite system with defined as follows.

only instruction fragment and generic operator rewrites2.  Let A be the set of pairs <T, ,'T> such that there is a
In Figur 1.1 rules r, to r7 are instruction fragment normal form rewrite sequence for T of the formr nu F 1 rules r1  r are nrco tor fra est 112 • " " o and T (" ... T2(7I(T)) .. •) is T, and 'o(Tj,)

rule s, aanr e nio rules waia e e ri aorrules, is T.,. For every local rewrite sequence T such that there
Rule r 9 is a conimutativity rule, while rule r8 is a identity is a<Tm,,'t>EA. let r-) be its composition. Ift has n

rule. The proof of Proposition 2.1 can be used to show: it a piations let pl.r N be he
. ~rewrite applications, let pre(,l... pre (',n)-n T be the

x.• .prefix subsequences of T. Let B be the set of trees of the.Proposition 2.2 Simple m achine gram mars are in B URS. fo m c( wh r , or s e Ti T > is n A ,c a)-' ~Machine grammars extended with commutativity and iden- fr f wee o oeT. T T si ,f~t

rs nmatches at Ti. and a(ftj =a(p) for some p in 0 R. Finally,
itY define B ' as a set of representatives of B under the

A local rewrite assignment provides a decomposi- equivalence relation between patterns.
tion of the original rewrite sequence: the concatenation of For every pair <T, ,T> E A and every substitution a
the local rewrite sequences of the input tree in post-rder with a(W) e B, ",)(€, a(u,,,C .)).a(,,.) are nodes
traversal order yields a permutation of the original rewrite i t

________________________in V and there is an edge in E between each successive
' For example boue used by Henry in Hm$4]. Henry handles pair of them. There are no other nodes in V or edges in

commutativity eplicitly by adding pauems. Idenutv ndes af recognized
by a peephole cpbnie or ir to inmuaic selecion.

-J.



E. I Compute the LR graphs of all the subtrees of theinput E.ee T.

The nodes corresponding to o(ax) are called the i t

input nodes, and those corresponding to o(N) (those in 2 If the goal G does not appear in the LR graph of T,

B') are called the output nodes. The remaining nodes, then there is no rewrite sequence from T into G;
corresponding to c(f3,,.,d)) for 1gj<n, are called the i.e., T "blocks" [GIG78]. If G does appear, assign
intermediate nodes, to each position of T a local rewrite sequence by

applying steps 3 to 5 recursively starting with T.
Note that the union of all the input nodes in all the being T and T.., being G.

LR graphs gives I.G. the union of all the output nodes 3aen
gives 0,R .0 and the union of the input and the output 3 S a local rewrite sequence for
nodes gives EFRG. Figure 2.2 shows an input tree and its T=op(T1.... ,T3 ) by selecting any path in the LR
associated LR graph for our rewrite system. The input graph corresponding to a local rewrite sequence 0-
trees are shown inside broken circles, while the output from some input tree op ( 1 .  ) into an output

trees are in complete circles. The goal is reg. tree p such that there is a substitution o with $
a(p) = ar(T..).

4 Recursively apply (3) to input T, and goal T ....,
The notion of an LR graph leads to the following and to input T. and goal 7..

procedure for solving REACHABILITY for rewrite systems in 5 Combine all the local rewrites in post-order to yield
k-BURS: a normal-form rewrite sequence for Ti. into To.

The procedure is non-deterministic since any path
can be chosen in Step 3. The first step in the procedure

Input Tree State 0

+ '2_

0 ,Const reg. V

C onst C onst ! o. ...

,,.. ......

+ +

0 reg., reg 0
"°. ............ / 

g

o............. .,

+ /- bip

imode amode: amode amode

............. ... .. .°'°

Example of a BURS-state

Figure 2.2 1
... V"t~



and the test in the second step determine whether there is In general, an LR graph contains more than one path
an appropriate rewrite sequence. The remainder of the within the state which leads to an output tree. But it is
procedure produces one such sequence. only necessary to keep one alternative for solving REACHA.

The first step assumes that it is possible to compute BILITY. Consequently, it is possible to use the me
the LR graphs. An important special case when this is REACHABILITY algorithm and to replace the LR graph by

possible is when the extended pattern set is finite. In this any subgraph of it such that (i) it contains all the output

case the collection of all the LR graphs that may be nodes, (ii) every node has at most one entering edge, and

assigned to any subtree of any input tree is finite. We call (iii) for every output node there is at least one directed

this subclass of BURSfinite BURS. path with all its nodes in the subgraph from an input node
to the output node. (Since all input nodes are reachable,

A semi-decision procedure for membership in finite all but one of them can be omitted). Such a graph is called
k -BURS in the case that the input set Li is Lo, first tests a une ofte cal grap h graph is he

k-BUS an geerats al th locl rwrit seuen:.s, a uniquely invertible local graph (UI LR graph), and is the ,
k -BURS and generates all the local rewrite sequences, second notion of state used to solve REACHABnTY.

using the characterization used in the proof of Proposition
2.1, and then tries to generate the extended pattern -- , fol- Since the same UI LR graph may be a subgraph of

lowing Definition 2.6. If the procedure terminates, then several different LR graphs, choosing the UI LR graphs

the extended pattern set can be used to obtain the collec- carefully may allow a reduction in the number of states

tion of all the LR graphs. needed. For exanple, in Figure 2.2 there are many dif-
ferent ways of obtaining reg; any one of them is good

It is not difficult to see that the extended pattern set fenugh.sIf htaiting rom a oetm odst enough. If the path starting from +(amodeamode) is "-
of machine grammars as defined in Definition 2.5 is finite, selected, this state could also be used for many other trees
Thus: including, for example, +(OReg) and +(Reg ,O). Unfor-

Proposition 2.3 Every simple machine grammar isfinite tunately, selecting the UlI LR graphs so as to minimize the

BURS. Machine grammars extended with commutativiry tot number required is a complex problem.V
and identity rewrites are also finite BURS. Proposition 2.4 Given a rewrite system R over Op, and a

If the rewrite system is finite BURS, then each one set of trees L, over Op, with <R,Lo,,L 0 > e finite BURs,
of the individual steps of the algorithm for solving fixed the MINIMUM U! LR GRAPH problem consists of assigning to
REACHABIaTY can be precomputed, stored into a table, each LA graph a valid UJ LR graph such that the number
and replaced, at REACHABILITY-solving time, by a table of UI LR graphs used is minimum. MINIMUM UI LA GRAPH is

lookup. This leads to a typical "table-generator plus NP-complete.
solver" approach to REACHABIUTY. The table generator Proof by reduction of MINIUM covER [GaI80]; quite
computes all the possible LR graphs, and stores their straight-forward, see [Pel87]. 0-
interactions into tables. The solver then consults them. By The selection process is further complicated because
moving computation into the table generator, the solver selecting some paths in an LR graph may make some recancin procee patrs rapidly.p aymkesoere
can proceed very rapidly, in the graph "useless" for solving REACHABILITY, which

If the rewrite system is finite BURS, it is also possi- may open new opportunities for making graphs equivalent.
ble to solve BLOCKING efficiently. If the input set is Lop, Section 4 below describes a heuristic used to select the UI
there will be a blocking tree if there is an LR graph that LR graphs, as well as the table representation used by the
does not contain the goal G as a node. If the rewrite sys- solver. Detection of useless nodes in the graphs can be
ten has the property that <R,Lo,,Lop> is in finite BURS, done by a simple iteration process.
and S is a recognizable rTha73] subset of Lo,, we can findthe R gaph tht ae uefu fo tres n S an wecanREACHAMM. problems Can be used in everal
the LR graphs that are useful for trees in 5, and we can applications, the rest of this paper shows how to modify
find whether there is a tree in S for which R blocks. Both the algorithm to solve the C-REACHILnTY problem.
problems are solved by constructing the bottom-up tree

automaton recognizing S and "running it against" the

automaton computing LR graphs; see (Pel87] for details.



3. Solving c.RAc AsL~ rry

A first approach to solving C-REACHABUJrY would
be to enrich the notion of an LR graph by using a graph Rewrite Rules
where the nodes are not patterns but pairs (pcost) where R R
cost represents the minimum cost to reach pattern p, and Fejch -- mode Fejch -+ mode
where the edges correspond to rewrite applications along Conrt nmode,

paths of minimal cost. Such an approach works correctly 2 2
but leads to an unbounded number of states and thus to
costly solver-time operations. A better solution is to store, amode arode -. goalConst amode "
instead of the total cost needed to reach p, only the delta
cost. The delta cost is defined by substracting from the 1 0

cost associated with each pattern, the smallest cost associ- Const -4 imode Fech - imode
ated with any pattern in the LR graph. Since the cost of a imode
sequence is the sum of the costs of all the rewrites in the I 1
sequence, choosing a rewrite sequence based in the delta
cost yields the same solution as choosing one based on full -4 imode imode -4 goal
costs, yet the number of states will be smaller. The result- Const inode

ing notion is called a 8-LR graph. 2 0
The delta costs can be computed without first com-

puting the full minimal cost for each pattern. The delta An Unbounded Number of 8-LR Graphs

costs of all patterns in the graph can be computed from the Figure 3.1
delta costs of the input nodes, which are determined by the
delta costs of the output nodes of other states.

There is no guarantee that a rewrite system that is in number of "+" operators and the number of "Fetch"
finite-BURS will, when extended with costs, have a finite operators in the tree. Recording this information requires
number of 8-LR graphs. Consider, for example, the an unbounded number of states.
rewrite system of Figure 3.1, where the cost of each rule is Fortunately, the above situation is uncharacteristic
shown below it. of "real" machine descriptions. Real machine descrip-

This r,;write system contains two separate sets of tions have a symbol, which corresponds to the notion of a
rewrite rules: those involving "imodes" and those involv- "register", that plays a central role: all trees (except '

ing "amodes". Now consider an input tree of the form: maybe a few) can be rewritten into "register" in a short

+ number of rewrites and "register" can rewritten into all
trees (except maybe a few) also in a short number of

Const + rewrites. This provides a "triangular inequality" that

' forces together the delta costs associated with the trees in
Const 9 the LR graph and leads to a finite number of 8-LR graphs.

* See [Pe187] for one possible formalization of this argu-

Fetch ment.

Fc Testing if there is a finite number of 8-LR graphsFetch
can be done as part of the generation of the graphs. Con-

Const ceptually, the procedure can be understood as first generat-
ing the LR graphs and then annotating them with costs and

Whether "imode" rewrites or "'amode" rewrites generating more 8-LR graphs until no new graph is found.
are cheaper depends on the relationship between the This procedure will terminate if there is a finite number of

8-LR graphs, but will fail to do so if there is an infinite

. .,, , ,,-_,-_ '.,r _ --- , -'. ,.-: -:,-', ,-...,.::.-.-,.'> -. -.--.:,._-,:::, -'-.'-:..':',,':-'.-.', '.,:.",.'%"..'-:':.":.. %..'.. ,..



number of them. shared. Our implementation accepts only 0, 1. and 2-ary

If there is a finite number of states, then it is possible operators. In the case of binary operators, the representa-

to apply the same algorithm used for REACHABnr to don is a table where identical rows and columns have been

Solve C-REACHABIIrY very efficiently. Unfortunately, a found; we call the 1-dimensional arrays indicating identi-

single LR graph may be replaced by several 8-LR graphs, cal rows and columns, restrictors. We bit-encode the res-

which may lead to a substantially larger number of states. trictors and share them across different tables.

The number of states needed can be reduced in a way The code generator uses the automaton tables and
similar to that of the previous section by using 8-UT LR also a second set of tables that encodes each 8-Ul LR W.

graphs instead of 8-LR graphs. In addition, one can graph; the costs are not stored since they are unused. This
observe that the costs associated with the 8-LR graphs second set of tables is encoded using a technique similar to

(and the 8-UT LR graphs) are not used in solving c- that in YACC [Joh78], by overlaying rows of information. %.

REACHABn.rIY: they are used to compute the states but, The table generator uses a few simple heuristics to reduce

after that, only the graph structure is used, without the cost the table size of these tables, see [Pe187] for details.
information. Since two different &(UI) LR graphs may A final modification from the theory of the previous

have the same structure, it is possible that two different section is that the problem that the code generator really

states may be equivalent. The minimal number of states wants solved is not C-REACHABILrrY. Each rewrite rule of
needed can be computed by a variation of the standard the rewrite system given to the table generator has, in addi-

algorithm to minimize a bottom-up tree automaton which don to a cost, a call to a semantic routine. What the code

is, in turn, a variation of the minimization of a finite-state generator uses is not a rewrite sequence of minimum cost,
automaton. but its associated sequence of semantic routine calls. We

call this problem UCODE. The minimum number of states 1%
4. A Cede Generator Generator needed to solve UCODE can be found using a minimization

We have implemented a code generator generator method like the one mentioned in the previous section.
that works by solving C-REACHABILITY using BURS The BURS code generator has been operative since

theory. The table generator implementation is stand-alone early 1987, integrated into UW-CODEGEN [HeD87], a

and emphasizes generating small tables, with no great testbed for table-driven code generators developed by
effort spent in trying to generate them fast. It has been Robert Henry at the University of Washington. uw-

running since late 1986. The implementation is based on CODEGEN does temporary and register management and

the theory presented in the previous two sections with includes the following code generators:
some modifications. The 8-LR graphs are first generated
using an extension of David Chase's algorithm for GG A code generator based on Graham-Glanville tech- N.

bottom-up pattern matchers [Cha87]; then useless informa- nology [GIG78];

tion is removed and S-UT LR graphs are selected. Since BU A locally optimal code generator based on bouom-

optimal selection of 8-UT LR graphs is difficult, the selec- up pattern matching, manipulating states similar to .
ion is done by a process which starts from 8-LR graphs LR graphs but with costs represented explicitly and

and attempts to make graphs identical by removing some computed with a dynamic programming algorithm;
alternatives, determining which nodes in the graphs are and

useless, removing them, and repeating the process. In our TD A locally optimal code generator based on top-down
experiments, the number of states stabilizes in two or three pattern matching technology and manipulating costs

iterations, explicitly with a dynamic programming algorithm.

The modified version of Chase's algorithm generates The trees in a state are listed explicitly.

a representation of the bottom-up tree automaton comput- D and BU were implemented by Damron and Henry,

ing the states (representing the 8-U! LR graphs) as a col- respectively, and were developed independently of the

lection of "folded" tables, one for each n-ary operator, BURS-based code generator presented in this paper. The -

where identical n-l-hyperplanes have been found and theory behind TD is similar to that used in twig [AGT86]



and in the top-down algorithms of Weisgerber/Wilhelm V
[WeW86]. The theory behind Bu is related to BURS and to
the bottom-up algorithm described by
Weisgerber/Wilhelm (WeW86]. The big advantage of the Vax-1 I Mc-680n0

UW-CODEGEN testbed is that it facilitates meaningful code Costs a ori. final orig. final
Constant K 182 95 190 167

generator comparisons. Mem. Refs M 1733 652 1089 576
We have tested the table constructor with several Instructions 1 417 270 190 167Side Effects S 417 268 213 194

machine descriptions that were developed at UC Berkeley Operands 0 182 95 537 374

as part of the CODEGEN effort [AGH84]. This paper only

reports on two machine descriptions that were made avail- Number of BURS States
able by Robert Henry: a Vax-li description and a
Motorola MC68000 description; for technical reasons, Figure 4.1

they are the only ones that we can use to generate code
with UW-CODEGEN. The machine descriptions used are
machine grammars without generic operator rewrite rules. Henry and Damron report in detail on the table sizes
The cost assigned to each rule is a 4-tuple indicating the for GG, BU, and TD [HeD87]. Figure 4.2 shows the table
numbers of memory bytes referenced, instructions issued, size for BURS for the different cost metrics. For each
side effects issued, and operands in the instruction frag- machine description and each cost function there are three
ment represented by the rule. The tuple leads to 6 numbers, listed from the top: the space used to represent
"natural" costs: a constant cost, each of the 4 elements the bottom-up tree automaton, the space used to represent
considered separately, and a lexicographic ordering on the the states themselves, i.e. their internal nodes and edges,
full tuple. We will denote the 6 costs as K, M, I, S, 0, and and the total space. Note that the major variation is in the
L, respectively. The GG implementation disregards the size of the bottom-up tree automaton. The bottom of the
cost information; the Bu and TD implementations always figure shows the influence of the representation of the res-
use full lexicographic cost. BURS currently can use any of trictors on the table size. The three columns indicate the
the 6 costs except L. restrictor size, the automaton size, and the total table size.

The two principal measures of interest are table size Sharing identical restrictors is a very simple optimization

and code generation speed. Table size is related to the and a big win; bit-encoding the restrictors does not seem to
number of states needed to solve UCODE, which depends significantly slow the UCODE solver.

on the cost function used and the method of state construc- Figure 4.3 compares the table sizes for several code
tion. Figure 4.1 shows, for the two machine descriptions generators in UW.CODEGEN. The values for BU, TD, and GO
mentioned, the number of 8-LR graphs that are generated are taken from [HeD87]; the line labelled "states" is the
initially and the final number of states needed. The table space for the patterns, replacements, costs, and actions; the
shows the big variation in the number of states needed: the line labelled "fsa" corresponds to different notions of
constant cost function (K) requires few states while the automaton. The UW-CODEGEN values are estimated from
function that counts the memory references (M) requires bar charts5 . The values for BURS are for the M cost func-
many. The lexicographic cost would produce a larger tion, which is the one requiring the largest tables. BURS-I
number of states but. due to implementation restrictions in and BURS-f represent different versions of the table genera-
our exploratory implementation of the table generator, the tor. BURS- is an approximation to L, (note that M is the
tables cannot be generated. An approximation to the lexi- first component), while BURS-f uses M as cost function but
cographic cost produces tables slightly larger than the larg- tries to generate the tables fast rather than spending too
est using a single component. The table also shows that in much time generating small tables. Again there are three
this example our heuristic to reduce the number of states numbers per combination of machine description and cost
obtains a significant reduction; we have obtained larger function. They are the size of the automaton, the states, b
reductions with other machine descriptions.

.1s
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Automaton, States, and Total Table Size

K M I S 0
Vax
B-fsa 1722 26388 5760 6390 1722
States 7698 15980 12320 12294 7682
Total 9420 42368 18080 18684 9404
Mot
B-fsa 3652 22500 3652 4542 10320
States 12588 20788 12588 13978 18692 We use the same set of 6 programs used in [HeD87]
Total 16240 43288 16240 18520 29012 to measure the performance of the code generator. These

Restrictor Encoding and Size are C programs ranging in size from 100 to 1200 lines.
(Vax using M) Figure 4.4 shows, for each target, three values averaged

Mode Restrictor B-fsa Total over the 6 programs: the time spent solving UCODE normal-
No Share 77604 94424 110404 ized to GG, the percentage of code generation time spent
Share 30888 47708 63688 solving UCODE, and the total code generation time normal-
No share/Bit 18564 34810 50790 ized to UCODE. (All measurements were made on a Vax
Share/Bit 10142 26388 42368 8600; only "user" time is considered).

Table Sizes (bytes) BURS is substantially faster than TD and BU because
Figure 4.2 manipulating costs is expensive: they have to be com-
Figure 4.2 bined, computed, and compared. It is more surprising that

BURS is even faster than GG. A careful comparison of the
respective portions of code implementing UCODE showed

and their sum. Chase's technology would provide a sub- several causes for the difference in speeds. Probably the
stantially smaller B-fsa than the one used in BU. Accord- biggest contribution lies in the representation of the auto-
ing to Chase [Cha87], a reasonable value is in the vicinity maton: GO uses a tight encoding and a cache, which loses
of 23K; this would place the total table size very close to in speed against the more efficient table folding. In addi-
GG and BURS. tion, GO uses the normal technique (for parsing technol-

ogy) of default transitions, which is slower than a simple
lookup. Another contributor is that the relationship

GG TD BU BURS BURS-1 BURS-f between the parser used in Go and the traversal of the tree
Vax providing the prefix traversal is not as simple as the tree

Fsa 33.7 20. 1 . 26.3 291 6.States 8.8 18.2 18. 15.9 15.8 18.5 traversal used by BURS. Finally, GG stores states and other

Total 42.5 38.3 75.0 42.3 44.9 65.5 information in a stack (the parse stack), while BURS uses
Mot (pre-allocated) slots associated with the tree; the stack
Fsa 33.0 18.6 50.2 22.5 26.9 35.3 requires extra checks for overflow and the like. GG also
States 8.7 18.2 18.2 20.7 22.3 23.5 uses a few more indirect routine calls than BURS. Despite
Total 41.7 36.8 68.41 43.3 49.3 58.8 the difficulty in comparing the methods in the presence of

these differences in implementation strategy, we think that

the evidence shows that BURS is, at least, comparable in
speed to GG. To reduce effects caused by compilation of

Figure 4.3 the algorithms, the values shown in Figure 4.4 correspond

to GG compiled using the peephole optimizer, and BURS
without it; the values are more favorable to BURS othcr-

We am uncertain of the accuracy of some of these number, wise.

JI.



no local disk. The bottom of the figure reproduces infor-
mation from [HeD87] comparing the performance of the
different table generators in UW-CODEGEN; values are in

Vax GG TD EU BURS seconds on a DEC Microvax-il. There are two columns

%in UCODE 14.04 32.97 31.13 8.74 for BU: the first column corresponds to the generation of

Total CG 1.00 1.34 1.27 0.93 tables without any effort to use cost information at table-
Mot GG TD BU BURS generation time to reduce the number of alternatives to

UCODE (rel.) 1.00 3.82 3.22 0.55 consider at code generation time; the second column
% in UCODE 16.61 40.77 37.29 8.81 corresponds to the tables used in our other comparisons, in
Total CG 1.00 1.45 1.36 0.94 which some elimination of alternatives is done based on

costs. We want to emphasize that the current implementa-
Code Generation Time tion of the table generator for BURS was written with no

Figure 4.4 special effort to generate tables fast.

S. Other Related Work and Conclusions

The quality of the generated code is measured sta6- The idea behind the algorithm for REACHABnlwY has

cally using the same metric that we have discussed earlier, been around for a while; maybe the earliest references are

the 4-tuple of values. Figure 4.5 shows the average cost, the dynamic programming algorithms of [AUJ77] and

normalized to 100 for BU and TD. BU and D have a small [Rip77]. BURS theory differs from these early proposals

error that shows very infrequently and which causes some in that it is based on rewrite systems, it can handle a larger

normalized values to be under 100.00. The quality of the class of rewrite systems, and it emphasizes the computabil-

code generated by BURS-l is quite close to the lexico- ity of the states by a bottom-up finite state automaton. Our

graphic optimum. theory was developed independently of the work of

The time spent generating the BURS tables depends
on the cost function and on the effort spent trying to gen-
erate small tables. The top of Figure 4.6 shows times in Vax K M I S 0
seconds on a Sun-3/75 with 12 MB of main memory and BURS 132.6 2361.3 398.8 368.4 148.1

BURS-f 94.1 921.3 207.7 196.5 111.7
BURS-I 204.7 4016.3 451.2 391.5 178.2

Mot K M I S 0
Vax M I S 0 BURS 282.84 2582. 281.5 324.7 S41.1
GG 103.90 105.38 99.97 103.53 iRS- 172.4 1757.9 170.7 194.6 518.9
BURS 100.00 102.77 103.40 100.00 BURS-1 216.7 19984.3 217.6 236.4 1158.3BURS-I 100.00 100.17 101.02 100.00

BURS-f 100.00 101.72 103.42 100.00 (Sun3V,ewxds)

Mot M I S 0
GG 102.43 100.00 103.28 98.05 Machine GG TD EU EU-cost
BURS 100.00 100.00 100.00 103.57
BURS-I 100.00 100.00 100.00 99.58 Vax 204.7 58.0 2A2.1 625.7
BURS-f 100.00 100.00 100.00 103.57 Mot 194.8 61.0 442.9 1753.1

Quality of the Generated Code (LVax.II seconds)

(100 is optimal) Table Generation Times

Figure 4.5 Figure 4.6 .



Weisgerber/Wilhelm [WeW86J. and Henry/Damron We have shown the potential for BURS-based fast

[HeD87]; it differs from the work of those researchers in optimal code generation for expression trees. The main

its ability to encode cost information into the -BURS advantage of optimality is that as long as the machine

states and in handling a larger class of rewrite systems. description is accurate, there is no need for dhe machine

Our work on optimal code generation yields results similar description writer to understand the theory used to gen.

to those claimed by Hatcher and Christopher [HaC] ezate the code generator. A non-optimal technique like

[Hat85] but while the Hatcher/Christopher technique GG generates optimal code for a uniform instruction set

rquires modifying some parts of the machine description such as those found on RISC machines [Pat85]. It can

to retain optimality, the approach described here will generate quite good code otherwise (see Figure 4.5) if the
always be optimal, provided that a finite number of states machine description is carefully written [Hen84].

exist. We suspect that the Hatcher/Christopher technique REAOCHn.TY problems can be used in several other
can be explained as a simplification of BURS-theory. applications. Projection Systems [Pe187] are a descriptive

Probably the best-known implementation for locally mechanism for tree transformation that is similar to wee-

optimal code generation is the one used for twig [AG786]. to-tree grammars [KMP4], and can be used, for instance,

The theory behind that implementation is quite similar to to describe the mapping between parse trees and abstract

the one used in TD with two differences. The first differ- syntax trees. Forward and backward applications of pro-

ence is that the implementation of twig reported in jection systems can be reduced to REACHABIT prob-

(AGT86] does more computation at solving time than TD. Ints. X-patterns [Pel87] are an extension of traditional S

Thus, twig has smaller tables and smaller table generation patterns to describe non-local conditions. Pattern match- .

times, but larger code generation times. The second differ- ing of X-patterns can be reduced to a REACHABnrY prob-

ence is in the phase organization. Both twimg and uw- lem. %

CODEGEN perform two types of transformations: some Our current research in the area includes exploring
transformations are for normalization and simplification, faster algorithms for the table generation, and testing of

like the mapping of short-circuit booleans into compare k-BURS for any recognizable input set. We are also

and jumps, the others are the ones discussed in this paper working in other applications of REAcHABnuTY.

and correspond to the machine instructions. Twig deals
with both types of transformations together in a single Acknowledgements
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